Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of the cyclooxygenase pathway.

نویسندگان

  • G T Rowe
  • N H Manson
  • M Caplan
  • M L Hess
چکیده

Human peripheral blood leukocytes, activated by phorbol myristate acetate, disrupt canine sarcoplasmic reticulum calcium transport, in vitro, by an oxygen-derived free radical mechanism. Activated leukocytes significantly depress Ca++ uptake activity and Ca++ -stimulated, Mg++ -dependent ATPase activity. The depression is completely inhibited by sodium-azide (0.1 mM) or the combination of superoxide dismutase (10 micrograms/ml) and catalase (10 micrograms/ml). Exogenous hydrogen peroxide (0.441-4.41 mM) uncoupled Ca++ uptake activity from ATP hydrolysis, and this effect was inhibited by catalase. Mannitol alone did not inhibit the effects of activated leukocytes, but superoxide plus mannitol (20-100 mM) resulted in normal ATPase activity, while Ca++ uptake remained depressed. In the presence of indomethacin and ibuprofen, activated leukocytes depressed Ca++ uptake and had no effect on ATPase activity. 2-Amino-methyl-4-t-butyl-6-iodophenol (MK-447) further depressed Ca++ uptake and partially inhibited the effect on ATPase activity. Indomethacin plus catalase completely inhibited the effects of activated leukocytes on cardiac sarcoplasmic reticulum. We conclude, first, that activated leukocytes depress canine cardiac sarcoplasmic reticulum Ca++ transport by an oxygen-free radical mechanism with the generation of hydrogen peroxide and hydroxyl radical. In addition to the classical membrane NADPH oxidase system, significant oxygen radical generation can occur through the cyclooxygenase pathway of arachidonic acid metabolism, and seems to be responsible for the generation of the hydroxyl radical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free radical-mediated skeletal muscle dysfunction in inflammatory conditions.

Loss of functional capacity of skeletal muscle is a major cause of morbidity in patients with a number of acute and chronic clinical disorders, including sepsis, chronic obstructive pulmonary disease, heart failure, uremia, and cancer. Weakness in these patients can manifest as either severe limb muscle weakness (even to the point of virtual paralysis), respiratory muscle weakness requiring mec...

متن کامل

Quantification of Radicals Generated in a Sonicator

The hydroxyl radical (OH•) is a powerful oxidant produced as a consequence of cavitation in water. It can react nonspecifically in breaking down persistent organic pollutants in water into their mineral form. It can also recombine to form hydrogen peroxide which is very useful in water treatment. In this study, terephthalic acid (TA) and potassium iodide dosimetry were used to quantify and inve...

متن کامل

Singlet oxygen interaction with Ca(2+)-ATPase of cardiac sarcoplasmic reticulum.

We investigated the role of singlet oxygen (generated from photoactivation of rose bengal) on the calcium transport and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum (SR). Isolated cardiac SR exposed to rose bengal (10 nM) irradiated at 560 nm resulted in significant inhibition of Ca2+ uptake (from 2.27 +/- 0.05 to 0.62 +/- 0.05 mumol Ca2+/mg.min [mean +/- SEM], p less than 0.01) and...

متن کامل

Effect of anthracycline antibiotics on oxygen radical formation in rat heart.

This investigation examined the effect of the anthracycline antitumor agents on reactive oxygen metabolism in rat heart. Oxygen radical production by doxorubicin, daunorubicin, and various anthracycline analogues was determined in heart homogenate, sarcoplasmic reticulum, mitochondria, and cytosol, the major sites of cardiac damage by the anthracycline drugs. Superoxide production in heart sarc...

متن کامل

The Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities

Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 53 5  شماره 

صفحات  -

تاریخ انتشار 1983